3.555 \(\int \frac{\cos ^2(c+d x)}{\sqrt{3-4 \cos (c+d x)}} \, dx\)

Optimal. Leaf size=80 \[ \frac{17 F\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{12 \sqrt{7} d}-\frac{\sqrt{7} E\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{4 d}-\frac{\sin (c+d x) \sqrt{3-4 \cos (c+d x)}}{6 d} \]

[Out]

-(Sqrt[7]*EllipticE[(c + Pi + d*x)/2, 8/7])/(4*d) + (17*EllipticF[(c + Pi + d*x)/2, 8/7])/(12*Sqrt[7]*d) - (Sq
rt[3 - 4*Cos[c + d*x]]*Sin[c + d*x])/(6*d)

________________________________________________________________________________________

Rubi [A]  time = 0.10212, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2791, 2752, 2662, 2654} \[ \frac{17 F\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{12 \sqrt{7} d}-\frac{\sqrt{7} E\left (\frac{1}{2} (c+d x+\pi )|\frac{8}{7}\right )}{4 d}-\frac{\sin (c+d x) \sqrt{3-4 \cos (c+d x)}}{6 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/Sqrt[3 - 4*Cos[c + d*x]],x]

[Out]

-(Sqrt[7]*EllipticE[(c + Pi + d*x)/2, 8/7])/(4*d) + (17*EllipticF[(c + Pi + d*x)/2, 8/7])/(12*Sqrt[7]*d) - (Sq
rt[3 - 4*Cos[c + d*x]]*Sin[c + d*x])/(6*d)

Rule 2791

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> -Simp[
(d^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x
])^m*Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2662

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c + Pi/2 + d*x))/2, (-2*b
)/(a - b)])/(d*Sqrt[a - b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]

Rule 2654

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a - b]*EllipticE[(1*(c + Pi/2 + d*x)
)/2, (-2*b)/(a - b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x)}{\sqrt{3-4 \cos (c+d x)}} \, dx &=-\frac{\sqrt{3-4 \cos (c+d x)} \sin (c+d x)}{6 d}-\frac{1}{6} \int \frac{-2-3 \cos (c+d x)}{\sqrt{3-4 \cos (c+d x)}} \, dx\\ &=-\frac{\sqrt{3-4 \cos (c+d x)} \sin (c+d x)}{6 d}-\frac{1}{8} \int \sqrt{3-4 \cos (c+d x)} \, dx+\frac{17}{24} \int \frac{1}{\sqrt{3-4 \cos (c+d x)}} \, dx\\ &=-\frac{\sqrt{7} E\left (\frac{1}{2} (c+\pi +d x)|\frac{8}{7}\right )}{4 d}+\frac{17 F\left (\frac{1}{2} (c+\pi +d x)|\frac{8}{7}\right )}{12 \sqrt{7} d}-\frac{\sqrt{3-4 \cos (c+d x)} \sin (c+d x)}{6 d}\\ \end{align*}

Mathematica [A]  time = 0.116625, size = 94, normalized size = 1.18 \[ \frac{-6 \sin (c+d x)+4 \sin (2 (c+d x))+17 \sqrt{4 \cos (c+d x)-3} F\left (\left .\frac{1}{2} (c+d x)\right |8\right )+3 \sqrt{4 \cos (c+d x)-3} E\left (\left .\frac{1}{2} (c+d x)\right |8\right )}{12 d \sqrt{3-4 \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/Sqrt[3 - 4*Cos[c + d*x]],x]

[Out]

(3*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 8] + 17*Sqrt[-3 + 4*Cos[c + d*x]]*EllipticF[(c + d*x)/2, 8
] - 6*Sin[c + d*x] + 4*Sin[2*(c + d*x)])/(12*d*Sqrt[3 - 4*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 3.379, size = 232, normalized size = 2.9 \begin{align*} -{\frac{1}{84\,d}\sqrt{- \left ( 8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-7 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 224\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +17\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{56\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-7}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2/7\,\sqrt{14} \right ) -21\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{56\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-7}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2/7\,\sqrt{14} \right ) -28\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-8\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+7}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(3-4*cos(d*x+c))^(1/2),x)

[Out]

-1/84*(-(8*cos(1/2*d*x+1/2*c)^2-7)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(224*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+17
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2/7*14^(1/2))-21*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(56*sin(1/2*d*x+1/2*c)^2-7)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2/7*14^(1/2))-28*s
in(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c))/(8*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)
/(-8*cos(1/2*d*x+1/2*c)^2+7)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{2}}{\sqrt{-4 \, \cos \left (d x + c\right ) + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(3-4*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2/sqrt(-4*cos(d*x + c) + 3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-4 \, \cos \left (d x + c\right ) + 3} \cos \left (d x + c\right )^{2}}{4 \, \cos \left (d x + c\right ) - 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(3-4*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-4*cos(d*x + c) + 3)*cos(d*x + c)^2/(4*cos(d*x + c) - 3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(3-4*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{2}}{\sqrt{-4 \, \cos \left (d x + c\right ) + 3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(3-4*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^2/sqrt(-4*cos(d*x + c) + 3), x)